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A new Particle-in-Cell code developed for the modelling of laser–plasma interaction is pre-
sented. The code solves Maxwell equations using Fourier expansion along the poloidal
direction with respect to the laser propagation axis. The goal of the code is to provide a
three-dimensional description of the laser–plasma interaction in underdense plasmas with
computational load similar to bidimensional calculations. Code results are successfully
compared with three-dimensional calculations.
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1. Introduction

Experimental and theoretical works performed during the last few years have shown the feasibility of laser–plasma elec-
tron acceleration [1–10]. The interaction of a laser pulse with an underdense plasma produces a trail of oscillatory fluctua-
tions of the electron density, e.g. a wakefield. The accelerating gradients in the wakefield can attain extremely high values (of
the order of TV/m), exceeding by four orders of magnitude the fields supported in conventional accelerators (some tens of
MV/m). Laser–plasma technology is currently considered as very promising in term of development of innovative applica-
tions [11]. Laser wakefield acceleration has permitted the production of high quality electron beams of energies up to
� 1 GeV [12]. Recently, controlled injection of electrons in the wakefield using a second laser beam has been achieved
[13]. Electron beams obtained in this manner are monoenergetic, tuneable and stable.

Numerical modelling of the laser–plasma electron acceleration in the regimes currently explored in the experiments re-
quires a kinetic description of the plasma. Moreover, a number of strongly nonlinear phenomena involved in the interaction
are intrinsically three-dimensional, in the sense that they are not well described in 1D or 2D geometries [14]. These phenom-
ena include pulse self-focusing and beam loading. Thus any attempt to bring a realistic description of the process requires
the use of a three-dimensional, fully kinetic approach.

The Particle-in-Cell technique is a well established method to solve Vlasov equation for the different plasma species cou-
pled with Maxwell equations. Fully-electromagnetic relativistic Particle-in-Cell codes provide detailed information about the
laser–plasma interaction, and they constitute nowadays the most powerful method to study this problem. Several 3D PIC
codes have been applied to the study of laser–plasma acceleration, as OSIRIS [15], VLPL [16], CALDER [17] and Vorpal
[18]. However, they demand extreme computer resources, and push existing computers to their limits. Indeed, resolving
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the high frequency laser fields requires to work with small time steps and cell sizes, and therefore, large number of simu-
lations cycles and large grids.

To overcome this difficulty, other codes (WAKE [19], QuickPIC [20]) make use of the ponderomotive force instead of the
high frequency laser field. The ponderomotive force varies slowly on the laser frequency ðx0Þ timescale, and therefore only
the plasma frequency ðxpÞ has to be resolved according to this model. The gain in simulation speed is of the order of
ðxp=x0Þ2. These codes also use the quasi-static approximation, i.e. assume that the laser pulse does not vary during the time
a plasma electron takes to pass the pulse. Within this assumption, only the laser evolution time scale needs to be resolved,
even if the cell size must remain smaller than the plasma length ðkpÞ (time step and cell size are no longer subject to the
Courant condition). These codes are particularly useful for studying very long propagation paths (cm-m) [20,21], for which
fully 3D PIC simulations are out of reach. The main drawback of these codes is they cannot describe self-injection or electron
trapping in regions of significant laser field. Another limitation comes from the envelope description of the laser, that be-
comes doubtful when the interaction is strong (large spectral changes, pulse distortion, etc.).

We propose an alternative to fully 3D PIC codes that takes advantage from the symmetry existing in laser–plasma inter-
action in underdense plasmas. We will show that the use of a Fourier decomposition in a PIC scheme allows us to reduce the
computational load to roughly that of a bidimensional simulation while preserving the three-dimensional nature of the
interaction, and obtaining a good quantitative agreement with fully 3D simulations.

The structure of this paper is as follows: in Section 2 the mathematical basis of our model are presented. In Section 3 the
implementation of the proposed scheme in a numerical code is presented. Results obtained with this code and comparison
with 3D PIC simulations are shown in Section 4. Conclusions are presented in Section 5.

2. Mathematical description

We begin by observing that the laser field of a pulse symmetrical under rotation around its propagation axis ðxÞ can be
written in cylindrical coordinates as follows:
Eðr; x; h; tÞ ¼ Eyðr; x; tÞŷ ¼ Eyðr; x; tÞðcosðhÞêr � sinðhÞêhÞ
Bðr;x; h; tÞ ¼ Bzðr; x; tÞẑ ¼ Bzðr; x; tÞðsinðhÞêr þ cosðhÞêhÞ

ð1Þ
with r the radial coordinate r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
. These expressions correspond to a pulse linearly polarized in y (h ¼ 0, see Fig. 1). The

functions Eyðr; x; tÞ and Bzðr; x; tÞ can be written as an envelope multiplied by a phase, namely Eyðr; x; tÞ ¼E0ðr; x; tÞ sinðk0x�x0tÞ
(in vacuum). We can identify the right-hand-side of Eq. (1) as the first order term ðm ¼ 1Þ in a Fourier expansion of the laser field
on h. As Maxwell equations are linear, different Fourier modes evolve independently in vacuum, that is, there is no mode mix-
ing. But modes become coupled when a plasma is present. For example, the laser pulse (m ¼ 1 field) will push electrons radially
outward producing charge separation and thus creating a m ¼ 0 field, i.e. the wakefield. We make the assumption that the main
coupling takes place between the zero order mode (the wakefield) and the first order one (the laser field) and that the inclusion
of few higher Fourier modes will be enough to describe the laser–plasma interaction process in underdense plasmas. If the first
m modes are retained, the calculation load will be roughly equivalent to performing m bidimensional calculations. Note that for
a circularly or elliptically polarized pulse, the laser field is also a m ¼ 1 field, as can be shown straightforwardly.

We proceed then to decompose the fields in Fourier series, !

Fðr; x; hÞ ¼ R

X
m¼0

bFmðr; xÞ expð�imhÞ

¼ bF0
realðr; xÞ þ bF1

realðr; xÞ cosðhÞ þ bF1
imagðr; xÞ sinðhÞ þ bF2

realðr; xÞ cosð2hÞ þ bF2
imagðr; xÞ sinð2hÞ þ � � �

ð2Þ
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Fig. 1. Definition of axis.
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For example, for the linearly polarized field (Eq. (1)), the coefficients in the expansion read
Fig. 2.
bE1
r ðr; xÞ ¼ aðr; xÞbE1
hðr; xÞ ¼ �iaðr; xÞbB1
r ðr; xÞ ¼ iaðr; xÞbB1
h ðr; xÞ ¼ aðr; xÞ

ð3Þ
Electric and magnetic fields time evolution is obtained in the PIC code from Faraday’s and Ampere’s equations,
oB
ot
¼ �r� E ð4Þ

oE
ot
¼ r� B� J ð5Þ
Replacing the fields using the expansion given in Eq. (2), we obtain the following set of equations for the coefficients of mode
m,
obBm
r

ot
¼ im

r
bEm

x þ
obEm

h

ox
ð6Þ

obBm
h

ot
¼ � obEm

r

ox
þ obEm

x

or
ð7Þ

obBm
x

ot
¼ �1

r
o

or
ðrbEm

h Þ �
im
r
bEm

r ð8Þ

obEm
r

ot
¼ � im

r
bBm

x �
obBm

h

ox
� bJm

r ð9Þ

obEm
h

ot
¼ obBm

r

ox
� obBm

x

or
�bJm

h ð10Þ

obEm
x

ot
¼ 1

r
o

or
ðrbBm

h Þ þ
im
r
bBm

r � bJm
x ð11Þ
where all the fields and currents are complex functions of ðr; xÞ. Currents are calculated by projecting macro-particle veloc-
ities over the grid ðr; xÞ and the Fourier modes. The algorithm used is not charge conserving, thus to ensure the fulfillment of
the Poisson equation a field Ec is added to the electric field. This correction field is obtained by solving the Poisson equation.
r � Ec ¼ q�r � E ð12Þ
Macro-particles advancing is done by the relativistic equation of motion
_P ¼ qðEþ 1=cv � BÞ ð13Þ
_x ¼ 1=ðmcÞP ð14Þ
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Examples of scalar (top) and vector (bottom) fields composed of one Fourier mode ðm ¼ 0Þ, two modes ðm ¼ 0;1Þ and three modes ðm ¼ 0;1;2Þ.
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The minimal requirement to simulate the wakefield generation in a plasma is to use the first two Fourier modes, m ¼ 0 and
m ¼ 1. The resulting simulation time is roughly twice the time taken by a bidimensional simulation. The number of modes
required to accurately model the interaction will depend on the degree of asymmetry of problem. The origin of the asym-
metry can be external (e.g. when trying to model a laser pulse with astigmatism) or intrinsic (e.g. the cross section of a
trapped electron bunch can depart from a circular shape). For example, using the first two modes we can describe fields with
their maximum off-axis (see Fig. 2), such as the density distribution of an electron bunch trapped off-axis. Using the first
three modes ðm ¼ 0;1;2Þ we can get fields with elliptical shape. This would allow the description of astigmatic laser pulses
or electron bunches with elliptical section, as those trapped in the first wake period close to the laser intensity peak.

3. Implementation

Maxwell equations are discretized on the grid with the E and B fields defined on the Yee lattice [22] (Table 1). Longitu-
dinal and radial cell sizes (Dx and Dr) are uniform all over the grid. Equations are solved in a time-centered scheme, thus
allowing consecutive update of the electric and magnetic fields. Macro-particles are advanced using a 2nd-order accuracy
scheme. The code offers the option of a moving window.

Macro-particles evolve in the six-dimensional phase space ðx; y; z;vx;vy;vzÞ. The current and the charge are projected
over the grid with a first-order interpolate scheme as follows: first, we calculate the indexes ði; jÞ corresponding to the four
neighbouring grid points, a straightforward calculation as we use a uniform grid. For example, for the lower left point the
indexes are given by
Table 1
Grids o

Field

Er

Eh

Ex

Br

Bh

Bx
i ¼ br=Drc
j ¼ bx=Dxc

ð15Þ
with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
. The contribution to the m mode component of the charge density on this point is given by
qm
ij ¼ CmDijq=DV ð16Þ
where q is the macroparticle charge, Dij ¼ ððiþ 1Þ2 � r2=Dr2Þ=ððiþ 1Þ2 � i2Þ � ððjþ 1Þ � x=DxÞ the area-weighting coefficients
and DV is the cell volume, DV ¼ 2prDrDx. Similar expressions can be obtained for the current components. The coefficients
Cm can be easily derived using orthogonality of Fourier terms, yielding
Cm ¼ eimh=p�
1=2 if m ¼ 0
1 if m > 0

�
ð17Þ
Exponentials appearing in this equation can be written as polynomials on y and z. For example, for the first three modes the
polynomials are
C0 ¼ 1=ð2pÞ
C1 ¼ ðyþ izÞ=ðprÞ
C2 ¼ ððy2 � z2Þ þ 2iyzÞ=ðpr2Þ

ð18Þ
This kind of direct projection over the modes has the advantage with respect to FFT-based schemes of not requiring an addi-
tional 3D mesh to project the sources before performing the transformation. This method is best suited when only a few
modes are included in the simulation.

The initial number of particles-per-cell is the same for all the cells. For the uniform density case, the weight of macropar-
ticles is proportional to r.

The code is parallelized via the message passing interface (MPI). Two dimensional domain decomposition is made in the
longitudinal and radial directions. Poisson equation is solved using a parallel iterative solver that implements the biconju-
gate gradient stabilized method.

3.1. Dealing with the axis

The cylindrical coordinate system presents a singularity at r ¼ 0 coming from the terms containing the factor 1=r. The
fields Eh, Ex and Br are defined in primal grid on r, that includes the axis r ¼ 0 (Table 1). Moreover, the fields Eh and Br are
f definition of fields and sources.

r x Source r x

Dual Primal Jr Dual Primal
Primal Primal Jh Primal Primal
Primal Dual Jx Primal Dual
Primal Dual q Primal Primal
Dual Dual
Dual Primal
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multivaluated at the axis. Following [23], we will work with these multivaluated fields at r ¼ 0 (note than the fields pro-
jected over the particles will be always single valuated). The equation for Eh (Eq. (10)) does not present a singularity. On
the other hand, the equations for Br and Ex (Eqs. (6) and (11), respectively) contain the factor 1=r, and therefore a method
to calculate these fields at the axis is needed.

The electromagnetic fields are not singular at the axis. In general, any scalar or Cartesian field S is single valued, and thus
it must fulfill the following condition
oS
oh

����
r¼0
¼ 0: ð19Þ
This implies that for these fields, the m ¼ 0 mode is the only one that does not vanish at r ¼ 0. This is the case for the fields Ex

and Bx, as well as for the scalar fields (as the density). It can be shown that for the cylindrical fields (Er ; Eh; Br and Bh) the m ¼ 1
mode is the only one that does not vanish at r ¼ 0 [23]. Therefore, we only need to derive equations for the m ¼ 0 mode of Ex

and for the m ¼ 1 mode of Br .
The value of the m ¼ 0 mode longitudinal electric field at the axis can be calculated from the integral form of the Ampere’s

law. The equation for Ex at the axis semi-discretized in space then reads
oðbE0
x Þ0j

ot
¼ ðbB0

hÞ1j
4
Dr
� ðbJ0

x Þ0j ð20Þ
We can remove the singularity in Eq. (6) by using the fact that bE1
z vanishes at the axis,
lim
r 0

im
r
bE1

z ¼ im
oE1

z

or
; ð21Þ
thus obtaining the following equation for Br at the axis:
oðbB1
r Þ0j

ot
¼ iðbE1

x Þ1j
1
Dr
þ ððbE1

h Þ0j � ðbE1
h Þ0j�1Þ

1
Dx

ð22Þ
4. Results

4.1. Laser propagation and wakefields

We made a series of simulations to test our assumption, i.e. than only a few Fourier modes are activated by the laser per-
turbation. We first present simulations corresponding to parameters used in experiments performed with the ‘‘Salle Jaune”
laser at LOA. The laser is linearly polarized in the y direction, with wavelength k0 ¼ 0:8 lm and peak intensity
I ¼ 3:4� 1018 W cm�2. The pulse has a duration of 30 fs FWHM and it is focused onto a focal spot of 18 lm FWHM. The focal
plane is at x ¼ 0. The corresponding normalized amplitude of the vector potential is a0 ¼ 1:3 (a0 ¼ eA=mec2, with A the peak
value of the laser field vector potential amplitude). Both temporal and radial profiles are Gaussian. The plasma is 2 mm long,
with a density ne ¼ 7:5� 1018 cm�3. No significant self-injection of plasma electrons into the wakefield is expected for these
parameters.

The simulation box size is 68k0 in the direction of laser propagation and 188 k0 in the transverse direction. Mesh sizes are
Dx ¼ k0=25 and Dr ¼ k0=3. The simulation is performed with 10 macroparticles-per-cell ðNppc ¼ 10Þ. That means that in each
cell we put 10 particles distributed between h ¼ 0 and 2p. We made simulations including two Fourier modes ðm ¼ 0� 1Þ,
three modes ðm ¼ 0� 2Þ and four modes ðm ¼ 0� 3Þ. In the three simulations the same number of macroparticles is used.
We found that the total plasma density calculated by adding up the contributions of the different modes becomes noisier as
the number of modes ðMÞ grows. The noise in the density is due to the use of a number of macroparticles orders of magni-
tude smaller than number of physical particles (sampling noise). The signal-to-noise ratio for a given mode m follows the
same scaling law as in Cartesian PIC schemes, that is,
SNRm ¼
X

i;j

ð�qm
ij Þ

2
=
X

i;j

ðqm
i;j � �qm

ij Þ
2

 !1=2

/ N1=2
ppc ð23Þ
with the indexes i and j running, respectively, in ½1;Nr� and ½1;Nx�. For the total density calculated including the contributions
of M modes, the signal-to-noise ratio follows the scaling SNR / ðNppc=MÞ1=2, i.e. the effective number of particles-per-cell is
divided by M. To keep the same noise level when adding Fourier modes requires to multiply Nppc by

ffiffiffiffiffi
M
p

.
The maximum normalized transverse field Ey as the laser propagates in the plasma obtained in these three cases is shown

in Fig. 3 (with E0 ¼ x0mec=e). All the electric fields in this section are in units of E0. The laser pulse propagates from the left
ðx ¼ 0Þ to the right. The pulse is strongly self-focused, reaching a maximum amplitude of a0 � 3 at x ¼ 860 lm. Then the
pulse diffracts, and it presents a second self-focusing phase from x ¼ 1300 lm. As expected, self-injection does not occur
in the simulation. We can see that the curves obtained for the laser amplitude are very close for the three cases. This indi-
cates that the laser pulse propagation does not change when adding Fourier modes with m > 1.
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The same trend is found at higher laser intensities. The evolution of the laser amplitude for a0 ¼ 5 and focal spot of 9 lm
FWHM is shown in Fig. 4. To reduce the numerical noise, we use 20 ppc, twice more than in the previous simulations. The
other parameters remain unchanged. Self-focusing produces a peak around x ¼ 280 lm, with a0 ¼ 7:4. Around x ¼ 350 lm
self-injection of electrons in the first wake period starts. From x ¼ 500 lm the laser pulse propagates as in a self-channeled
mode and does not undergo large amplitude oscillations. As in the lower intensity case, the evolution of the laser amplitude
does not change when including more Fourier modes in the simulation. Simulations made for a large range of parameters
confirm the fact that the evolution of the laser pulse does not change significantly if higher modes are included in the
simulation.

Inspection of the longitudinal profile of the transverse field allows us to get more information about the importance of
different orders in the Fourier expansion. We can see in Fig. 5 a screenshot of the transverse field as a function of
x ðy ¼ 1 lm;z ¼ 0Þ when the laser pulse is at x � 285 lm. The contributions of each of the three modes included in the sim-
ulation are shown separately. Note that the fields that we expand in Fourier series are Er and Eh and not Ey and Ez. With the
contribution of the mode m to Ey we refer to the Ey field calculated from the contributions of the mode m to Er and Eh,
Fig
Em
y ¼ Em

r ðhÞ cosðhÞ � Em
h ðhÞ sinðhÞ ð24Þ
Fields are plotted off-axis because for symmetry reasons the contribution of even modes to Ey are null at the axis. As ex-
pected, a low frequency contribution of the mode m ¼ 0 appears, and this contribution is small compared with the input
laser field m ¼ 1. This field with poloidal symmetry ðm ¼ 0Þ is the radial field of the wakefield. It presents two peaks around
x � 273 lm and x � 255 lm, corresponding to the back of the first and second wake periods, respectively. This large local-
ised radial field is associated with a large electron density peak occurring at the back of each wake period in the strongly
nonlinear interaction regime. On the other hand, the contribution of the m ¼ 2 mode is negligible compared with the lower
order modes.
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The longitudinal field Ex presents a marked dependency with the poloidal angle h. In the x� z plane (perpendicular to the
laser polarization vector, Fig. 6(a)) only the m ¼ 0 mode takes significant values. This low frequency field corresponds to the
wake longitudinal field. On the other hand, in the x� y plane (parallel to the laser polarization vector) the longitudinal field
presents a significant contribution from the m ¼ 0 and m ¼ 1 modes. As shown in Fig. 6(b), inside the pulse there is a sig-
nificant contribution of the m ¼ 1 mode that varies on the scale of the laser wavelength. This field arises from the finite radial
extension of the laser pulse, as can be seen by inserting in Eq. (11) the magnetic field given by Eq. (3) and neglecting J1

x , thus
obtaining
E
x/

E
0

Fig. 6.
obE1
x

ot
¼ oaðr; xÞ

or
) oE1

x

ot
¼ oE0ðx; rÞ

or
sinðk0x�x0tÞ cosðhÞ ð25Þ
In the x� y plane ðh ¼ 0Þ the high frequency longitudinal field takes its maximum value, whereas it vanishes in the x� z
plane ðh ¼ p=2Þ. In both cases, the contribution of the m ¼ 2 mode is negligible.

The total longitudinal field that results from the superposition of all modes is shown in Fig. 7. In the x� z plane we re-
trieve the low frequency wakefield, whereas in the x� y plane the high frequency component coming from the m ¼ 1 mode
is present. We can see that this field can be as large as the wakefield for cases of tight focusing as presented here (the spot
diameter is ’ 10:6 lm FWHM for this case). It can constitute a deleterious effect over the quality of bunches accelerated in
the the first wake as it introduces a large oscillation of the accelerating field at the k0 scale, thus reducing the monochroma-
ticity of the extracted bunch. This effect can be overcome by using shorter pulses or loose focusing.

The spatial distribution of electron density at x ¼ 850 lm (500 lm after the onset of self-injection, that arises around
x ’ 350 lm) is shown in Fig. 8. The first two wake periods are shown in this plot. An electron bunch is trapped in the first
wake period or ‘‘bubble”, and a second bunch is trapped in the second wake period. The electron energy spectrum presents a
peak around 180 MeV (Fig. 9), that corresponds to the bunch trapped in the first wake. The charge in this peak is 350 pC. The
effective accelerating field obtained for these parameters is close to 360 MeV/mm.
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The spatial distribution of longitudinal electric field in the x� y and x� z planes are shown in Fig. 10. In the x� z plane
(10.b) the field is smooth on the kp scale, whereas in the plane of laser polarization x� y (10.a) there is the high frequency
contribution coming from the mode m ¼ 1 discussed above.

The inclusion of higher order modes ðm > 2Þ becomes necessary when dealing with large laser intensities. As mentioned
above, electron bunches trapped in the first wake period are larger in the direction of laser polarization ðyÞ than in perpen-
dicular direction ðzÞ [24]. The inclusion of the m ¼ 2 mode is needed to deal with this kind of asymmetry (see Fig. 2). But at
high intensity, the deformation can be large [25] and more modes are needed to model it.

4.2. Comparison with 3D simulations

We present in this section a comparison between the results obtained with our new code and three-dimensional simu-
lations performed with the fully-electromagnetic PIC code CALDER [17]. Simulation parameters have been chosen to reduce
as much as possible the size of the simulation box in the 3D simulations. We raise the value of density to
ne ¼ 1:2� 1019 cm�3, to get a stronger self-focusing and a narrower beam. The pulse with amplitude a0 ¼ 5 and s ¼ 30 fs
has a focal spot of 9 lm FWHM. Three-dimensional simulations are performed with 4 ppc and a third-order interpolation
scheme, whereas Fourier simulations are done with 20 ppc, a first-order interpolation scheme, and three Fourier modes.
Three-dimensional simulations are performed using a time step Dt ¼ 0:24x�1

0 with a mesh of 1600� 160� 160 cells of size
Dx ¼ 0:25k�1

0 ;Dy ¼ Dz ¼ 2:5k�1
0 , corresponding to 160� 106 macroparticles. In the Fourier simulations the time step is

Dt ¼ 0:24x�1
0 with a mesh of 1600� 200 cells of size Dx ¼ 0:25k�1

0 and Dr ¼ 1k�1
0 and 6� 106 macroparticles. The three-

dimensional runs took roughly 7000 CPU hours (17 h in 400 processors). Fourier simulations took 70 CPU hours (12 h in
six processors), 100 times less than the 3D ones.

Two cases are considered. In the first one, the plasma presents a parabolic density profile in the radial direction, that im-
proves the guiding thus reducing the amount of laser energy reaching the transverse boundaries of the simulation box. In the
second case, the plasma is homogeneous.

The evolutions of the laser amplitude for the parabolic density profile plasma and for the uniform plasma are shown in
Fig. 11. In both cases the evolution is rather complex, with several cycles of self-focusing/divergence. In the case of the par-
abolic profile (Fig. 11(a)), the agreement is very good between both codes. From x ¼ 800 lm, the 3D curve presents rapid
oscillations, that are related with the arising of a peak in the laser longitudinal profile with length of the order of k0. For
the uniform plasma (Fig. 11(b)), there is a small difference from x ¼ 600 lm. We consistently found an overestimation of
the laser amplitude in the 3D simulations with respect to that obtained with the present code, when the transverse section
of the simulation box is so small as to allow a significant laser field to reach the boundary (periodic conditions are used in the
transverse boundaries in the 3D calculation). In the case of the parabolic plasma, the laser pulse is best guided and it can be
expected that this effect would be less important. The shapes of the laser pulses obtained with the Fourier and the 3D codes
are also in good agreement (Fig. 12).

The longitudinal electric field for the uniform plasma case is shown in Fig. 13. The results obtained with the Fourier and
the 3D codes are again very close. In the x� y plane we can see the high frequency field superimposed to the wakefield in the
first wake period, which is associated with the finite laser pulse radius as already mentioned. As expected, this field is absent
in the x� z plane in both simulations.

The spatial distribution of electron density for the uniform plasma is shown in Fig. 14. In this screenshot, corresponding to
x ¼ 640 lm, we can see that there is an electron bunch trapped in the first wake period. The density distribution of the bunch
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Fig. 10. Spatial distribution of longitudinal electric field in the x� y (a) and x� z (b) planes.
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is similar in the Fourier and 3D simulations, even if in the 3D simulation the radial spread at the head of the bunch and the
pulse length are somewhat larger than in the Fourier simulation.

5. Conclusions

In this paper, we have presented a relativistic Particle-in-Cell code based on a Fourier decomposition of the electromag-
netic fields developed to study laser–plasma interaction in underdense plasmas. The code allows a kinetic description of the
problem preserving the three-dimensional nature of the system with computer loads comparable to bidimensional calcula-
tions. Results of the code are in good agreement with those of fully 3D simulations.
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